Nhà máy sản xuất máy móc chính xác NaN Jingjiang Ningshu N Đài Loan
Tìm kiếm
Trang chủ

Tìm kiếm

  • Làm thế nào để bạn biết vít bi có bị hỏng hay không?
    Jul 05, 2024
    Dưới đây là một số điều cần chú ý khi xác định liệu một vít bóng bị hư hỏng hoặc có vấn đề: 1. Phản ứng dữ dội quá mức: Phản ứng dữ dội đề cập đến khoảng cách hoặc khoảng cách giữa đai ốc vít bi và trục vít. Nếu có nhiều phản ứng dữ dội, đó có thể là dấu hiệu của cụm vít bi bị mòn hoặc hư hỏng. 2. Tiếng ồn hoặc rung bất thường: Nếu bạn nhận thấy những âm thanh bất thường, chẳng hạn như tiếng mài hoặc tiếng gõ, hoặc cảm thấy rung quá mức trong quá trình vận hành, đó có thể là triệu chứng của vít bi bị trục trặc. Những vấn đề này có thể xuất phát từ quả bóng bị hư hỏng, đường lăn bị mòn hoặc bị lệch. 3. Tăng ma sát hoặc lực cản: Vít bi bị hỏng có thể biểu hiện ma sát tăng lên, dẫn đến cần có mô-men xoắn cao hơn để di chuyển tải. Nó có thể biểu hiện dưới dạng chuyển động giật hoặc không đều, giảm hiệu quả tổng thể hoặc khó đạt được vị trí chính xác. 4. Độ chính xác giảm: Theo thời gian, vít bi bị mòn dẫn đến độ chính xác định vị giảm. Nếu bạn nhận thấy lỗi dai dẳng hoặc sai lệch so với vị trí mong muốn, đó có thể là dấu hiệu của vít bi bị trục trặc. 5. Hư hỏng hoặc mòn có thể nhìn thấy: Kiểm tra vật lý vít bi xem có bất kỳ dấu hiệu hư hỏng rõ ràng nào không, chẳng hạn như vết lõm, vết trầy xước hoặc biến dạng. Bất kỳ dấu hiệu hao mòn hoặc biến dạng quá mức nào cũng có thể chỉ ra vấn đề. 6. Bi chuyển động không đều hoặc mất tải trước: Vít bi bị hư hỏng có thể có dấu hiệu chuyển động bi không đều hoặc mất tải trước. Nếu các bi mất căn chỉnh thích hợp hoặc tải trước bị mất, hiệu suất và độ tin cậy của vít bi sẽ bị ảnh hưởng. Điều quan trọng cần lưu ý là việc chẩn đoán các vấn đề về vít bi có thể cần đến chuyên môn kỹ thuật hoặc sự trợ giúp của chuyên gia. Nếu bạn nghi ngờ vít bi của mình có vấn đề, bạn nên liên hệ với nhà sản xuất hoặc kỹ thuật viên có trình độ để kiểm tra và đánh giá chi tiết. Nếu bạn có thêm câu hỏi, xin vui lòng liên hệ với chúng tôi.
    ĐỌC THÊM
  • What makes ball screws, used in high-end equipment, so superior?
    Jan 07, 2026
    In high-end equipment such as nanoscale focusing servo systems for semiconductor lithography machines, precision drive chains for industrial robot joints, and high-speed assembly platforms for new energy vehicle battery modules, ball screws serve as core transmission and execution components, undertaking crucial functions of motion conversion and positioning control. From five-axis CNC machine tools to aerospace attitude adjustment mechanisms, from precision medical imaging equipment to high-end intelligent manufacturing production lines, all high-end equipment with stringent requirements for transmission accuracy, dynamic response, and reliability uses ball screws as its core transmission solution. This article systematically analyzes the core technological advantages of ball screws and their suitability in high-end equipment, starting from their technical principles and engineering characteristics. The core technological advantage of ball screws stems from their innovative transmission principle. Compared to the surface contact sliding friction transmission of traditional sliding screws, ball screws employ a rolling friction transmission mechanism: high-precision balls are embedded as the transmission medium in the closed loop formed by the screw helical raceway and the nut raceway, converting the relative sliding between the screw and the nut into the rolling motion of the balls. Based on this innovation in the rolling friction principle, ball screws primarily possess highly efficient transmission characteristics. From the perspective of transmission efficiency, the mechanical transmission efficiency η of ball screws can reach 90%~98%, while that of ordinary sliding screws is only 20%~40%. According to the power balance equation, under the condition of constant load F and transmission stroke s, the driving torque M is inversely proportional to the transmission efficiency η. Therefore, using ball screws can reduce the output torque requirement of the drive motor to less than 1/3 of that of sliding screws. This characteristic not only significantly improves energy utilization efficiency, but more importantly, it reduces the heat generation power of the transmission system. For high-end equipment, thermal deformation of the transmission system is one of the core error sources affecting positioning accuracy. Low heat generation can effectively control the thermal elongation of the screw, ensuring the temperature stability of the equipment during long-term continuous operation, providing a fundamental guarantee for high-precision control. Precision positioning performance is the core technical indicator for ball screws to adapt to high-end equipment, and it is also a key advantage that distinguishes them from ordinary transmission components. In the field of high-end manufacturing, positioning accuracy and repeatability directly determine the processing/operation quality of equipment. For example, the wafer alignment accuracy requirement of semiconductor lithography machines is ≤±5nm, and the positioning accuracy requirement of five-axis CNC machine tools is ≤±1μm. Ball screws ensure precise positioning through three core technologies: first, high-precision helical raceway grinding technology, using ultra-precision grinding machines to achieve a raceway profile error ≤0.001mm; second, preload technology (such as double-nut washer preload and single-nut variable lead preload), eliminating axial backlash and generating a slight interference to achieve zero backlash in reverse transmission; and third, low-heat design, combined with a temperature control system to suppress thermal deformation. High rigidity and long lifespan are core engineering characteristics that allow ball screws to adapt to the harsh operating conditions of high-end equipment. The transmission systems of high-end equipment often face harsh conditions such as heavy loads (e.g., clamping forces in all-electric injection molding machines can reach thousands of kN), high-frequency start-stop (e.g., joint movement frequencies of industrial robots ≥10Hz), and impact loads, placing extremely high demands on the rigidity of transmission components. Ball screws, through preload design, achieve negative axial clearance (interference fit). Utilizing the elastic deformation of the balls to generate preload force, axial stiffness can be increased by more than three times. Compared to sliding screws, deflection under the same load can be reduced by more than 60%, ensuring stable motion accuracy under heavy load conditions. From a lifespan perspective, the low wear characteristics of rolling friction make the fatigue life of ball screws significantly superior to that of sliding screws. Using high-quality materials such as GCr15 bearing steel, combined with carburizing and quenching (surface hardness HRC≥60), ultra-precision grinding, and a labyrinth seal + grease lubrication system, wear and impurity intrusion can be effectively suppressed. According to the life calculation model of ISO 3408 standard, under rated dynamic load, the rated life (L10) of a ball screw can reach millions of cycles, which is 5 to 10 times that of a conventional sliding screw. Engineering test data shows that ball screws with optimized preload parameters can extend their continuous service life from 30,000 hours to 50,000 hours under 80% rated load, significantly reducing maintenance downtime and spare parts replacement costs for high-end equipment and improving overall equipment efficiency (OEE). High-speed response and flexible adaptability are key characteristics of ball screws for meeting the dynamic control requirements of high-end equipment. In terms of high-speed performance, the DN value (shaft diameter d × speed n) of ball screws can exceed 140,000, far exceeding the upper limit of the DN value for sliding screws (≤50,000). Combined with a high-speed ball circulation structure (such as an internal circulation reverser type), high-speed transmission with a maximum speed ≥3000 rpm can be achieved. In servo control systems, the synergistic effect of low friction coefficient and high rigidity can shorten the system's step response time to the millisecond level, improving dynamic tracking accuracy. In engineering applications, the welding equipment for new energy vehicle battery packs utilizes lightweight ball screws (carbon fiber composite nuts) and dynamic preload compensation technology, reducing acceleration time from 0.2s to 0.08s, increasing production line cycle time by 50%, and raising daily capacity from 1200 sets to 1800 sets. Humanoid robot joints employ small-lead, high-precision ball screws, achieving an angular velocity of 1.5 rad/s and a repeatability of 0.01° under a 20kg load, meeting the requirements of multi-degree-of-freedom collaborative control. The flexibility of the structural design allows the ball screws to adapt to the installation and operating conditions of various high-end equipment. Classified by ball recirculation method, external recirculation (insertion type, end cap type) is suitable for large lead and high-speed scenarios, while internal recirculation (reversing type) has the advantages of compact structure and stable operation, and can adapt to narrow installation spaces. In terms of materials and surface treatment, stainless steel (SUS440C) with hard chrome coating can be used for corrosive conditions, Inconel alloy with aluminum nitride coating can be used for high-temperature conditions, and carbon fiber reinforced composite nuts can be used for lightweight requirements, reducing weight by more than 50% compared to steel nuts. Furthermore, by customizing the lead (e.g., micro-lead ≤1mm, large lead ≥20mm), thread direction (left-hand, right-hand, bidirectional), and installation method (fixed-fixed, fixed-floating), precise adaptation to high-end equipment transmission systems can be achieved, improving system integration efficiency. With the development of intelligent manufacturing technology, ball screws are evolving towards integration and intelligence, becoming a core component of intelligent transmission systems. By incorporating built-in temperature, vibration, and displacement sensors, data such as temperature, vibration amplitude, and positioning error during the transmission process can be collected in real time. Combined with an industrial internet platform, this enables status monitoring and fault early warning. Dynamic preload compensation technology based on AI algorithms can correct accuracy deviations caused by thermal deformation and wear in real time, further improving the stability of transmission accuracy. Regarding breakthroughs in domestic technology, domestically produced ball screws have achieved mass production with C0-level precision. Through the adoption of independently developed ultra-precision grinding processes and material formulations, they have successfully entered the supply chains of international high-end machine tool manufacturers such as AgieCharmilles (Switzerland) and DMG MORI (Germany), providing core transmission component support for the high-end transformation of Chinese manufacturing. In summary, the technological advantages of ball screws stem from the fundamental innovation of their rolling friction transmission principle. Through the synergy of high-precision structural design, optimized material processes, and intelligent control technology, a multi-dimensional performance balance of high-efficiency transmission, precise positioning, high rigidity, long lifespan, and flexible adaptability is achieved, precisely matching the stringent requirements of high-end equipment for transmission systems.
    ĐỌC THÊM

để lại lời nhắn

để lại lời nhắn
Nếu bạn quan tâm đến sản phẩm của chúng tôi và muốn biết thêm chi tiết, vui lòng để lại tin nhắn ở đây, chúng tôi sẽ trả lời bạn ngay khi có thể.
nộp

Trang chủ

Các sản phẩm

whatsApp

liên hệ